الهيدروجين وخلايا الاحتراق

الهيدروجين وخلايا الاحتراق.. صيغة مستقبلية لإنتاج الطاقة الكهربائية بكفاءة عالية وتوافق بيئي

الهيدروجين وخلايا الاحتراق
الهيدروجين وخلايا الاحتراق

الدكتور رشيد بنشريفة

أستاذ بالمركز الوطني للبحث العلمي والتقني طرابلس

من المنتظر أن يلعب الهيدروجين دوراً ريادياً في مجال الطاقة في المستقل، ولا سيما أن المواد الأولية لإنتاجه غزيرة، ودائرة إنتاجه واستعماله تمتاز بتوافق عالٍ مع شروط التنمية المستدامة. وبإمكان نظام طاقي يعتمدل على الهيدورجين كحامل طاقي أن يجعل المصادر الطاقية المتجددة في متناول المستهلك. والتطور التكنولوجي المتزايد الذي نتابعه في مجالات إنتاج الهيدروجين وأساليب تخزينه وطرق نقله وميادين استعماله سيفرضه حتماً على نطاق واسع. ويتحلى الهيدروجين بخصائص فيزيائية وكيميائية ممتازة تمنحه صفحة “المحروق المستقبلي الشامل”.

والتقدم الحاصل بالموازاة في تطوير خلايا الاحتراق دليل على إمكانية تجاوز معضلة خزن وتوزيع الطاقة من أصل متجدد. تُنتج هذه الخلايا الطاقة الكهربائية مباشرة بتحويل الطاقة الكيميائية بكفاءة عالية. زيادة على أن مردود اشتغال الخلايا قد يصل إلى 60 في المائة فهي تمتاز بمحافظتها على البيئة ومرونة عالية في الاستعمال. ويمكن لبعض هذه الخلايا وخاصة التي تعمل على درجة حرارية مرتفعة أن تستعمل محروقات متنوعة وذلك لتوافرها على قدرة ذاتية لاستخلاص الهيدروجين مبائرة من هذه المحروقات. نقترح في هذه الورقة تقديم الهيدروجين كحامل طاقي مستقبلي، وتقديم واقع تكنولوجيا خلايا الاحتراق.

لقد حقق الإنسان عبر تاريخه الطاقي تآلفاً بينه وبين المجال الطاقي المتوفر لديه والذي يعيش منه على مرحلتين كبيرتين: تعرف الأولى بطول مدة استغلاله الطاقات المتجددة من حرارة الشمس والرياح وجريان المياه وخاصة طاقة الكتلة العضوية. وظلت القدرة الطاقية المتوفرة والتي يتحكم فيها الإنسان خلال هذه المرحلة جد ضعيفة، تحد من طموحاته وقدراته في مسيرة التقدم ومسيرة تطوير وتنمية مجتمعه. وبدأت المرحلة الثانية نهاية القرن الثامن عشر مع بداية الثورة الصناعية، وصاحب وتيرة التصنيع خلال هذه الفترة استنزاف سريع للمخزون الطاقي الأحفوري. ومما لا شك فيه أن استهلاك الطاقة بالشراهة التي كانت لازالت تستفحل إلى يومنا هذا، سيحدث أضراراً بالغة في التوازن الإنساني والطبيعي وسيتسبب في المزيد من الكوارث الإيكولوجية وغيرها التي باتت تهدد سكان الأرض والإنسانية.

أمام هذا الوضع الحالي الذي لا تحسد عليه طبيعتنا التي تطلب منها تكوين الرصيد الطاقي الأحفوري عشرات الملايين من السنين، وأمام المشاكل البيئية الناتجة عن الاستعمال المفرط وغير المسئول لهذه المصادر، تجد الإنسانية نفسها لأول مرة في تاريخها أمام تحديات جسام تفرض عليها اتخاذ بسرعة وحزم القرارات الصائبة لتصحيح من جديد مسارها الطاقي. مجال التفكير واتخاذ القرارات شاسع طيعاً، ولكن ستظل في كل الأحوال القرارات التي ستضمن تواجداً ملائماً للإنسنان في بيئته وطبيعته التي فطره الله عليها هي القرارات الصائبة.

فمن المنتظر أن تعود الإنسانية من جديد إلى اعتماد المصادر المتجددة: الشمس (الطاقة الحرارية والطاقة الإشعاعية والرياح والأمواج) والأرض (طاقة الجاذبية والمد والجزر في البحار والمحيطات)، وتحل محل المصادر الأحفورية، وما التقدم الظاهر الذي أحرزته طاقة الرياح وطاقة الكهرضوئية إلا دليل واضح وضمانات مقدمة مسبقاً على أن العصر الشمسي في بداية طريقه للقيام بدوره المنتظر.

وحسب عدد من مؤسسات البحث والتنمية وعدد كبير من الصناعيين، الهيدروجين هو المرشح الذي سيلعب دوراً ريادياً في الانتقال من العصر الأحفوري الحالي إلى العصر الشمسي. وتضافر من جهة غزارة المادة الأولية لإنتاج الهيدروجين ونعني بهذا الماء، ومن جهة أخرى الخصائص الفيزيائية والكيماوية التي يمتاز بها هذا الغاز سواء عند إنتاجه أو استعماله، سيجعلان منه الحامل الطاقي الشامل. والجهود المبذولة في مجالي البحث والتنمية سيسمحان بكل تأكيد من خفض كلفة وتحسين كفاءة إنتاج الهيدروجين وكذلك نقله وخزنه وتوزيعه.

الهيدروجين غاز لا رائحة له ولا لون له وليش بغاز سام. له خصائص فيزيائية وكيميائية ممتازة تُخوِّلُه من أن يكون الوقود الشامل. في حين أن غاز الهيدروجين لا يوجد حراً في الطبيعة فإن ذرة هيدروجين متوفرة بغزارة فائقة في الطبيعة، فهو العنصر الرئيسي في تركيبة الكون بحيث تصل نسبته لإلى 90 في المائة، و66 في المائة من مياه البحار مُتكوِّنة من ذرات الهيدروجين و63 في المائة من جسم الإنسان يتكون من ذرات الهيدروجين. بعض خصائص الهيدروجين مع مقارنتها بمثيلاتها الميتان والبنزين. يمتاز الهيدروجين بقدرته الحرارية الكتلية العالية: 120 ميغاجول للكيلوغرام، وهي ثلاثة أضعاف القدرة الحرارية للبنزين.

ينتج عن تفاعل الهيدروجين مع الأكسجين تحرير كمية كبيرة من الحرارة (282 كيلوجول لكل جزئ من الهيدروجين المتكون من ذرتين)، ويُصاحب هذا التفاعل تكون الماء. وتصل حرارة اللهب الذي يكاد لا يرى عند احتراق الهيدروجين بأكسجين المتواجد بالهواء إلى 2318، ورغم أن للهيدروجين مجالاً واسعاً للاشتعال في الهواء، فإن خطورة اشتعاله تلقائياً أو انفجاره محدودة. وهذا راجع إلى قدرته الكبيرة على الانتشار بسرعة في الهواء، فالهيدروجين يتسرب دائماً في الهواء إلى الأعلى ويتقلص تركيزه بسرعة. ونظراً لصغر حجم حزئ الهيدروجين، يمتاز بقدرة عالية على النفاذ من خلال الأغشية والمواد ذات المسام، وهذه الخاصية ترفع من كلفة نقله ةخزنه ةخاصة عند استعماله كوقود في وسائل النقل.

نظراً لعدم تواجد الهيدروجين كغاز بالطبيعة فيستوجب توفير الطاقة اللازمة لتحريره من الجزيئات التي يدخل في تكونها. تحتل المصادر الأحفورية الصدارة من بين المصادر المستعملة في إنتاجه، يُنتج 96 في المائة من الهيدروجين عن طريق الكيمياء الحرارية، ومنها 48 في المائة من الغاز الطبيعي و30 في المائة عن طريق رفرماج للمواد الكربوهيدراتية، و18 في المائة عن طريق تحويل الفحم إلى غاز أي ما يسمى بتغويز الفحم. و4 في المائة الباقية من إنتاج الهيدروجين يتم عن طريق التحليل الكهربائي للماء. ولقد وصل حجم الإنتاج العالمي من الهيدروجين سنة 2002 إلى 500 مليار متر مكعب تحت ظروف الضغط والحرارة العادية.

يلعب الهيدروجين دوراً هاماً في الصناعة الكيماوية والبتروكيماوية (إنتاج الأمونياك والميتانول والأصاغ.. الخ)، حوالي 250 مليار متر مكعب في الظروف العادية. 50 في المائة من الطلب العالمي مخصص لإنتاج الأمونياك، المادة الأولية في الصناعة الأسمدة. 37 في المائة من إنتاج الهيدروجين يستعمل في التكرير، 8 فيالمائة لإنتاج مواد آيماوية وخاصة الميتانول و4 في المائة يُستعمل في التعدين وفي صناعة أنصاف الموصلات. فقط 1 في المائة من الإنتاج العالمي للهيدروجين يستعمل في ميدان الطاقة وخاصة في الاستعمالات الفضائية.

تتميز عملية الرفرماج للغاز الطبيعي من بين الوسائل الأخرى لإنتاج الهيدروجين بالكلفة المنخفضة، حوالي 9 دولارات للجيغاجول، ولا تمثل هذه الكلفة إلا 37.5 في المائة من كلفة إنتاج الهيدروجين عن طريق التحليل الكهربائي للماء، 24 دولار للجيغاجول حسب متوسط الأثمان العالمية للكهرباء. وتضاف كلفة التخزين، وكلفة النقل والتوزيع إلى كلفة الإنتاج عند استعمال الهيدروجين في النقل. وتصبح كلفته عند التوزيع ما بين 26 و41 دولار للجيغاجول.

تُعرف المثادر الأحفورية بالمحدودية في مخزونها. واستعمالها المفرط له عواقب خطيرة على الإنسانية، والعودة للمصادر المتجددة لا تقاوم. في حين أغلب هذه المصادر الأخيرة غي متوفرة زمنياً بانتظام ويمكن نعتها بالمصادر الطاقية المتوقعة أي لا يمكن نقلها ولا تقييمها إلا في موقع توفرها، كما هو الحال للأشعة الشمسية، والرياح وطاقة الأمواج. تحويل هذه المصادر إلى كهرباء يُمكِّن من تقليص الفارق الزمني والمكاني بين العرض والطلب، ولكن يبقى اللجوء إلى نظام خزن كيماوي لازماً ولا يمكن الاستغناء عليه. والحامل الطاقي المرشح من طرف العلميين والصناعيين لهذه المهمة الحيوية هو الهيدروجين.

وبما أن المصادر المتجددة ودائرة الهيدروجين من إنتاجه إلى استعماله لا يمثلان أي خطر على البيئة، وإنما يقدمان بدون شك إمكانية حل المشاكل البيئية الواقعة وإمكانية الاستقلال الطاقي التدريجي من المصادر الأحفورية وذلك بتمكين خزن الطاقة الشمسية في شكل طاقي كيماوي حتى يتسنى استعمالها في أشكال طاقية ثانوية أخرى في الزمان والمكان المطلوبين. فمن المنظور الذي يهدف إلى اعتماد الهيدروجين كحامل طاقي بتوافق بيئي شامل واحترام شروط التنمية المستدامة، فهنالك العديد من التصورات الممكنة والمدروسة بعمق. البعض منها وصل إلى مستنوى تكنولوجي متقدم والبعض الآخر لازال في مرحلة التجارب بالمختبر. هناك فرعان رئيسان لإنتاج الهيدروجين بوفرة عالية وباستعمال الطاقات المتجددة (الحرارة الشمسية، الرياح التحويل الكهروضوئي والكتلة العضوية)، وهما التحليل الحراري للكتلة العضوية والتحليل الكهربائي للماء.

يمكن لإنتاج الهيدروجين عن طريق التحلل الحراري أو التحويل بالكيمياء الحرارية للكتلة العضوية أن يستجيب لطلب محدود وموقعي على الهيدروجين كحامل طاقي. أما إنتاج الهيدروجين عن طريق التحلل الكهربائي للماء فهو جد واعد ما دام هذا الإنتاج يهدف إلى خزن الطاقة من أصل متجدد وغير منتظم في الإمداد. يُستعمل الفائض من الطاقة الكهربائية المنتجة بشكل وفير وغير منتظم في الزمان في إنتاج الهيدروجين وتخزينه لحين الحاجة إليه أو نقله إلى مكان الطلب.

ولقد أظهرت من جهة أخرى مختلف التقنيات المعتمدة في المحطات الحرارية الشمسية نجاعتها التقنية. وتحقيق المشاريع من هذا النوع سيحسن بدون شك الكفاءة الاقتصادية لإنتاج الكهرباء من أصل شمسي. قدمت العديد من الدراسات تقديرات بخصوص كلفة النقل والخزن والتوزيع، وتتفق كلها على هيمنة كلفة الطاقة الكهربائية المستعملة على الباقي.

لا يتعدى حالياً إنتاج الهيدروجين حاجيات محدودة، سواء كان إنتاجه في نفس مكان استعمال والخاص ببعض الصناعات التي تستهلك كميات كبيرة منه. يُنقل كذلك على شكل سائل في حاويات خاصة أو في شاحنات خزانة لمسافات قصيرة أو في باخرات خاصة لنقل الهيدروجين سائل لمسافات طويلة، ويظل نقل الهيدروجين مضغوطاً في حاويات للغاز مقتصراً بالخصوص على تغطية حاجيات المختبرات. ومن المنتظر أن تُستعمل القنوات الخاصة بنقل الغاز عبر الدول والقارات بشكل واسع، وأن تقوم بنقل الكميات الكبيرة من الهيدروجين غاز الذي ستُنتجها المرآبات الشمسية في المستقبل. يوجد حالياً العديد من القنوات المستعملة لنقل غاز الأكسجين وغاز الآزوت وكذلك غاز الهيدروجين لمئات الكيلومترات، 1500 كيلومتر من هذه القنوات توجد بأوروبا و700 كيلومتر توجد بالولايات المتحدة.

لكي نتمكن من الاستعمال الفعال للهيدروجين كحامل طاقي في المستقبل، فلابد من اعتماد نظام موثوق به وقادر على خزن الهيدروجين دونما خطر تسربه وقادر على الاستجابة للمتطلبات الطاقية سواء من ناحية الجودة أو التكاليف. وتنكب حالياً مجموعات من فرق البحث على هذه المسألة التي رصد لها ميزانيات هامة ضمن برامج البحث والتطوير في هذا الميدان. فخزن الهيدروجين على العموم لا يطرح أي مشكل تقني أكثر من الغاز الطبيعي. إلا أن ضعف الكثافة الطاقية الحجمية لديه تعوق استعماله في حالته الغازية في وسائل النقل نظراً لكبر حجمه. واستعمال الهيدروجين سائلاً ينهي مشكلة الحجم، إلا أن التكلفة الطاقية لتسييل نفس كمية من الهيدروجين هي أكبر أربعة أضعاف منها عند ضغط الهيدروجين إلى 700 بار. فضغط الهيدروجين إلى 700 بار يستوجب 10 في المائة من الكمية الطاقية المتوفر عليها الغاز قبل ضغطه في حين يستوج تسييل الغاز 40 في المائة من الطاقة الأصلية للغاز قبل تسييله.

يعتبر الخزن الكيماوي للهيدروجين في مواد هيدريدية عن طريق الامتصاص أو الخزن الفيزيائي عن طريق الامتزاز كرويات دقيقة أو في مواد كربونية ذات بنيات مكونة من أوعية دقيقة، من التقنيات الواعدة والمرشحة لأن تلعب دوراً هاماً في مجال تخزين الهيدروجين وخاصة في ما يخص استعماله في النقل.

زيادة على أن الهيدروجين قد استعمل منذ أمد بعيد في العديد من الصناعات البتروكيماوية وصناعة المواد الكيماوية وخاصة إنتاج الأمونياك، فيمكن استعمال الهيدروجين كوقود مستقبلي، ويمكن له أن يستجيب لمختلف الطلبات على الطاقة سواء كانت في شكل حرارة بعملية احتراق مباشر أو احتراق حفزي أو في شكل كهرباء باستعمال خلايا الاحتراق. حالياً يستعمل الهيدروجين كوقود في مجال الاستعمالات الفضائية.

لازالت هنالك تحديات تقنية أمام استعمال الهيدروجين في مجال النقل، كحجم هيدروجين في حالته الغازية والكلفة العالية لتخزينه. ويستعمل حالياً على شكل سائل مما يخفض طبعاً من حجم المخزون ولكن لازال مكلفاً. ويحقق تسييل الهيدروجين حجم مقبول لا يتعدى 13 لتراً للكيلوغرام ولمسافة 100 كيلومتر عند استعماله في السيارات.

قبل أن نتطرق لواقع تكنولوجيا خلايا الاحتراق، لابد من تقديم الكهرباء، الحامل الطاقي ذي الجودة العالية، والذي يستجيب بشكل ممتاز إلى العديد من خصائص الطلب النهائي على الطاقة. ولهذا فالصناعة الكهربائية التي لم تنطلق إلا في أواخر القرن التاسع عشر، تستهلك حالياً حوالي 35 في المائة من الطاقة الأولية المتاجر بها على الصعيد العالمي.

تقدم تكنولوجيا خلايا الاحتراق فرصة الحصول على مستويات جيدة في مردود إنتاج الطاقة الكهربائية تصل إلى أزيد من 60 في المائة. وتُمكِّن كذلك من تقليص استهلاك المصادر الأولية مع إمكانية عالية في تقييم الطاقة الحرارية المنبعثة خلال إنتاج الكهرباء، وكل هذا مع الالتزام التام بالشروط البيئية المنشودة. تعتبر خلايا الاحتراق أجهزة كهروكيماوية يتم بواسطتها تحويل مباشر للطاقة الكيماوية إلى طاقة كهربائية وطاقة حرارية، وذلك بمردود عالٍ، رغم أن اشتغال خلايا الاحتراق يمكن تشبيهه بالبطاريات الكيميائية إلا أن الفرق يكمن في أن المحروقات تتواجد داخل البطاريات في حين يتم إمداد خلايا الاحتراق بالوقود كما هو الحال بمحركات الاحتراق. يُستعمل الهيدروجين على العموم كوقود بهذه الخلايا.

إذا كانت الاستعمالات التقنية للهيدروجين من خزن ونقل وتوزيع في العديد من المجالات تشكل موضوعات بحث وتطوير منذ أمد بعيد، فإن الأبحاث المركزة والمدعمة ببرامج جادة لم تنطلق إلا في مطلع السبعينات من القرن السابق، وكان ذلك طبعاً في اتجاه استعماله كبديل للحوامل الطاقية المستعملة.